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CONCERNING A CLASS: OF-SOLUTIONS OF
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D. M. Wolkow, L&Hingrad

ABSTRACT: Solutions of the Dirac equation are developed for
the case of a sinusoidal field and the case ifn which the
external field consists of polarized waves travelling in a
certain direction and having a countable spectrum from the
standpoint of frequency and initial phases.

1. The case of a sinusoidal field. - 2. Solution for the case in which the
external field consists of polarized waves travelling in a certain direction

having a countable spectrum from the standpoint of frequency and intial phases.

1. The Case of a Sinusoidal Field

Let the scalar potential of the external field acting on the relativistic
quantum electron equal zero and let the vector potential be

| TR P TR
4 = acosan[t——-ﬁ:—:+oc] = acostplw,lth(p = 2nv[t-———c- +a]_g

v here is a constant (frequency), t time, ¢ the velocity of light, # a unit
‘vector (which indicates the direction of propagation of an electromagnetic
‘wave associated with'4); x denotes the vector proceeding from the initial point
of the rectangular Cartesian coordinate system, selected so as to be sta-
tionary, according to the variable point, a system for which the above vector
potential is prescribed. nx = (1, ) = zn is the sign of the scalar product;
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‘1 Numbers in the margin indicate pagination in the foreign text.
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a the constant vector with real componénts perpendicular to n (so that (a, n)

= 0)}; and lastly, ol is a constant.vw; St

Let the components of the vectorsﬁx, 4, a, n ...be respectively

ey L

Ty, T, Ty; Ay, Ay, dg; 05, 09, g5 Ny, Ny, Mg v s

0 In our case the external field represents a sinusoidal electromagnetic
wave of fixed direction and fixed frequency. The Dirac equation for the
function ¥ (x, %), which here descrlbes the state of the electron in the

5 variables x, ¢ 5§\l§ follows:

! ‘ik a ) ' a ‘e I SR _
| {2‘— 5t_+(“’_1fl5;+'?A>+g,,mc}y)(a;,t)=0, ' (1

d
In this equation % is the Planck constant divided by 27, ig‘ a vector with

Bz, Oz, 6‘3:3
| 01 0y, Oy 01, 09,03, 01, Qg O3 %y oy, xy ATE the known Dirac matrices; e is the

the components 9 9 9. ; o is a matrix vector =|g0 ; ¢ has the components

charge of the electron; m is the mass.
If the operatbf on the right in the braces of equation (1) is multiplied

by

) @

a new operator arises

(@ 2 (it 24—

—ol(2 ) i ) (o 20 (2 3]




It can be shown by means of transformatlons similar to those glven by o
Dirac (for the reverse sequence of factors) (page 288)!, that the last opera-
tor equals Prge Do :

ih 9y I B T ke,
(—E— 5?) -—«(-— 76 + - A) m“c’—-—-—-—(o‘,H)~§-'l,~gl ( E’)
H denotes the magnetic and £ the external electric field:

o "1 04
Bmwhd Be g 57

Let us now consider the equation

Uik o 4 L8 . e
| K‘c‘ 5) —(—it g+ 2 4) "
_..7)1,209——-7"-;(0’,4?1) + ig,ﬁ;(G,E)} Z (z,t) = 0.

In our case

4

| ) M 2 . . 2“"’ © e
| A =acosg, H= ——-i:-_’—)[a,n]smqa’), = — - asmg:

If the notation

: 2nv7ze N 2nvh@e

{(G’L“""’] +"'(°°:“)} L [0(-%-{—1_](0(,0,) ==

is introduced, the sign is changed in IS), and account is taken of the fact

=

; s e
that 33- ~Q~akmm ¢__0(51nce a, n) = 0), equation (3) for the given field may
k..—-

? The difference consists only in thé“éign standing before the brackets.
2 la, n] is the sign of the véctorial product of g and n.



also be written as foll‘oWs :

(R P 8 _..e 9
{Eﬁ_mmmzmzakcos«pb—ﬂ ;,
o] (4)
+5d cos? p 4 m? ¢® 4 gsin ?’}Z(w,t) = 0. '

In this equation summation is to be made according to k in every term contain-
ing k. !

Let p be the vector of the moment of motion of the free electron and E
its energy. Then we have: ‘

"c‘g‘=’P1’+P§+p§+m’c’=—.pﬂ+m’cﬂ, (5)

We assume that the solution of equation (4)1 may be represented in the
form

= (Bt p&] + F(P) i
,Z(ft,t)ze n‘ (6)

where F (¢) is a required matrix function which is to have the following

property: FF' = F'F, F'; F' designates the derivation of function F (¢)

according to ¢.

If we differentiate (6) we obtain:

0z _ [._.‘17 +2nvF’]Z,
%

9t .
, i :

&2z = ‘ _—7-'—113—{-2qu’] +4n2v‘2F"}Z,' :

t ) .
6_Z_ _ [%_2nvnkF,]Z’
0 ay /) e
0z {{i@mm F| + 4mt ot ) 2
oz /) ¢ )

1 2 = Napier.



F'' denotes the second derivative of function F () according to ¢.

We now have

ROz 0z ameniE 10
@ ¢ —'*kﬁkgl M' = {mz ¢ + T{? -—anF"}‘Z,

The terms containing the second demvatlve F'' will vanish, since
-h3+h’-1 . We also have '

. -—~2'¢,h-—cos<p éakgz [ (a,p) ecosw]Z
&y,

Equation (4) yields

f {J”;’m[%——np]zmr (“’p)”cs«r+ cos”rp+gem¢}z =0;

hence

) 1 S " S T
= T [gcsmq)—}-ﬂ(a,p)ecosqa-}- T (1+cos2qa)],
P 4nvhi[—c—-—~n1’] | 1 g e B

and

C R (p) = ,WWLE__«_ 00‘308¢P+(a,p)esm¢p+ (2tp+sm2<p)
4nvk‘i[;———np}

+ a constant matrix.



Now Z (z, t), which satisfies equation (4), has the form

Z (z,t) _ ‘
. : - 2 g2 '
»—;‘-[El—pm] ;c coa ¢+ e sto @ + 8 “"";;‘“94)’ 7
3 > . : g
i uva[E.-np] znvhffla np]_ mfunwlg np}
; 7,

7% is an arbitrary constant matrix which in general may also depend on
the constants p;, Py, and p3. (2% is introduced because an arbitrary constant

maxtrix is contained in“ﬁﬁ*éexpression for F ©@).)

Matrix g; in the exponents has the following property:

- —gec __e(l—i—ocn)(@a)
i | B 7 s ]
; 4nvhi[-§——=n'p] 2c[-§~——np]
‘ 2
= (U ) () (L + am) (4,0)
463,-?—-—”'})-] .
' &
=-—~;~_—E—-——-—i(l+an)(l—-ocn)(oc,a)”m0,
S U I |

isince A+oan)y(l—an) =1-—(@nd=1—1=0

If the expression obtained for Z (x; t) is expanded into a series accord-
ing to the powers of g; and the fact is taken into account that all these

powers save the first equal zero, Z (x; t) may be written in the following
form:

1 § .
[Et-«-px]-—wﬁs .

i s 4 (% i) .—._— (1 +g,cosg)e * ,
.where ) ’ ;
cape. gl ‘
§S=—28% sing4 — (29 4-sin2¢). | (8)
27;7[7—-7»1)] ’iGnvc[-;——-enp] '

ist.



If operator (2) is applied to the function Z (x; t), we obtain ¢ . which

will satisfy Dirac equation (1): B

‘ s — 1—an)a®e
| . w}“ﬁmmgin¢+gﬂmiplgﬂgogw+j_tﬁ@quap,
| 2[-—~—np] c[——*—np] | 26’[————‘“9]
¢ ¢ ¢ e

- _.Z_(oc, a) cos ¢ + —? —ap— g,,mc}Z(m,t) 4

The last éxpression is simplified if Z is adopted in the form (8) and the
following relations are taken into account:

. . . T o o
| (l—anjg=0(1—an)g, =0. \
. 3 _ 1 2.2 "
| _% %a) cosq)gxcosq?:—-e (m,a)(l‘; oum) (o, ) cost @ = — M{_‘%ﬁ)_‘f_f__cms o
' 2c* | ——np 2| — —np
[ ¢

After conversion we obtain

«e' T
S
T

+4 (g—ap—gsv;t(;)(l +oum) (oc,a)]cos P+ %*—' ocp-—gamc} e

Y= [@—“;n)a‘p— (;»;)(%j—np)

i

1 1
—yBt=pal=38

After certain modifications we can transfer the factor g('é"‘“,“p"“‘Qsm”)

from right to 1eft by taking the following equations into account.
(D) ()= a,p -}-'b(o‘,[p, a,% =G

A p) (0 0) = — (% a) (1), , ’ i
(@) (@) = — (% a) (% p) + 2(ap), ' “

(o, @) (,m) (x, ) = ":Q; (p1 [a,n]) + (“’ [p! [a, '”‘JJ)

(&) (% 0) (4, n) = (& a) (% n) (o p) — 2 (o [, [0, n]])

: i(.];l:——mpf—:-gsmc (on; )(ocn) = }(x, a) (“,’"')<*l’z-—-0tp-——gamc)

)
| L — (v [l
_ (wa) (0, p) — (@ n) (@, p) = (“: [p’ [a ”]])



The following expression will then be obtained for the brackets situated
with cos ¢ as a factor:

"’['E““’-—j [("‘: ‘f‘) (n,p) — (“»k”) (a) P)>+ ap "“’(0‘; a) '?
cl——np .

s : o, a) (on) /B
. —c—-—«acp-—gs’lnc>-—-ap--()2---(—~“)(-;-

- (O(, [pi [a': 'n]])] P ¢ (as a) (1 -+ mn) E

i (—c——-—ocp-—»Q,,mc>. ‘

—~mz‘9~ee,.m0)jfz

We set .

»

e(ma)(l +an)
TR T
Coefp ]

{

9)

This matrix, g-f, has the following property: (91‘)2 = 0. Hence ¢p {x; t) may

finally be written in the following two formulas:

=(1—g’fcosq))e_WL()(-Iczuap——g,mc)e "wt pz]tp"

t f
‘ = (—gteos@)e B y", (10)
G ‘l/) =¢3‘/|’)0'
where R
g
o , yx-eg}“coswe—ﬁs ' an
and ‘
] n[El pal (12)
" =(_c— p-—(_)89n0>1/)e
ist.

If everywhere in the preceding operations we set ay, = 0, and we are justi-
fied in so doing, since we had to perform no division by az, We obtain y = 0;
p%  is thus the solution of equation (i) for the case in which no field is
present. Since ¢y is usually assumed to consist of a single column, we may, as

we have already done in the last, formulas, also replace z0 by $9, which then



may consist of a single column (say the first). As is to be desired, the inte-
gral (7) found depends on an arbitrary real vector p, which has the meaning.

of the vector of the moment of motion. of the electron still not influenced by
the field. We consider in space p a p01nt po with a small environment Apg,

where py may be an internal p01nt of Apo, pr may then be normallzed 1n the

usual fashion so that the follow1ng relatlon is satisfied:

1
1
id%?m{dp]j prdppr de =1, (13)

4py dpo

|Apg| denotes the volume of Apy, x traverses the entire space, and w; is the

transported matrix conjugate to wp;

da: == da:l dw2 dma, dp = dpl dp2 dp3,

each integral sign must here be conceived of as being replaced by a triple
sign.
Formula (11) shows that wp is a product of'tWC periodic functions with

different periods 1/» and 1/V, where V is the frequency related to E by the

B PR
relationﬂ34'—"§T*~*”‘==h7 . If the ratio »/V is rational, this product as
' 40[—-—-—%1)
[ 4
well is a certain periodic function; in the continuum of E values the cases
of the latter kind form an everywhere dense enumerable set.

2. Superposition of Electromagnetic Waves with Different Frequencies and
Initial Phases.
We now proceed to investigate the case in which the scalar potential Ag

equals zero, while the vector potential is of the form

A-faEbfcosQnad[t———+mf] > ol cos pf (14).

=1 j=1



In this equation a and » are unit Vect@rs perpendicular to each other.
@ = 2_mf[t-_’fcf o w‘], o = abl,

vY o/, b7  denote arbitrary real numbers, the series {:Slbﬂ. converging.

if=1

We shall see later that the enumerable set of frequencies »Y also cannot be
completely arbitrary; it rather must be subject to certain general conditions,
thls belng just as necessary for convergence of the subsequently arising in-

gaf

f1n1te series as is now the absolute convergence of

For the potentials considered (14) equation (4) may be written in the
form ‘ ‘

ik 0y § e = N
{(?B—t‘ (—— ’Lnaxk+—;j=10rk008¢> ‘ (15)
—nz’c’—f;(a,ﬁ)—{-iglgf(a,ﬁ)}Zz;O

. > .
(It is here necessary to sum up from one to three according to x.) H is

the magnetic and E the electromagnetic fields associated with potentials (14).

We introduce the following notation:

i

gl = W(I-{—ocn)(a, "

E
ZC{—--—-—-?LI)J
. (29 + sin2 )
¥ = gfcos @7 + (“"%e sin gt 4 2L @2 = (16)
. 2nvﬁu[—-——np] lﬁnwjlzzc[;—np]

_gﬂi]lﬂ 14 ocn) (o, 0) = gl
¢t

10



It is to be noted that the matrices gi equal each other except for a constant
factor bJ hence they commutate among themselves and according to the fore-
going have the property gl g1' =0, Wthh is valid both for j # j' and for
J = J'. For this reason we maxueeuntﬁgg the right with the matrices gl as
with ordinary numbers. ]

If the sign of the left-and side of equation (15) is changed and it is
noted that

;—(G,H)——ie,——(m;?) = > ¢isin @J

Cc » . j=1
is valid, the equation in question may be written in the form

P 02 6
(17)

+c—2.w,{o,[cos¢f<pj'+m“c“+gfsinq)f}Z-—-O'

(in this case summation is to be made according to k from one to three and
according to J and j' from one to - o; 4 and j' change independently

of each other). We shall henceforth everywhere dispense with the summation
sign and merely write out the common term, in each instance with index,
always indicating how the indices are changed.

We first assume that

"“‘%[Ei--px]-l—x o ;
7 = ¢ j=1 g0 (17*)1

1" We here assume absolute and uniform convergence of the series v/, this im-
posing certain restrictions on the aggregate of the frequencies; however, the
required convergence will of itself be fulfilled on the basis of conditions to
which this aggregate of frequencies subsequently must at any rate be sub-

jected,

11



we introduce it into equation (17), and then perform the operations indicated
there; when this is done the exponenial function may. be differentiated in the
usual manner, since the exponent.commutates.with its derivative.

Only the
following terms accordingly remain on the left-hand side.
g;[E(afaf ‘ w“’j”‘f]w
- T , 04"} cos @J cos @i | Z = 1" Z == q. ~
e 7 ) cos ¢ ~ P %q q (17**)

J and j'' independently traverse the vélue from one to =; the only requirement

is that §'' # j. (The other temms vanish in accordance with the relation

nf +n§ N+ n;‘; )

So that the terms written out in (17%**) will also vanish, we further set

e+ T SN »/‘"
- [Et—pa)+ 44
A= 3 2 (18)

(In the exponent it is necessary to perform summation according to j, J'' from

- - o . - ‘. AR .
one to »; J # j''). For the pair JJ'', in which »d #v? " is to be found, we
assume that ‘ ‘

yjj" e ﬂjj" cos (pf sin (pj" + ljjn Sin q’j cos wjn;.,\,
N R T R

(17%%*)

jjll jjl' ’ ) )
and 7 are to be independent of x and ¢.
RR
and (17) yields the factors of Z in addition to qJJ :

where u Substitution of (18)

X 2}_.. jju2nvj“h‘i E._.n ;‘A ‘ 272.11{_@{__”]} ,008 i 'eos i ‘

: |~ ¢ ],o E I ¢ P ¢ P
= 4 » jl’

2{/41'1" 2”:”“ l%—np] . "2———~——n ”c At [];z—np]} sin (pjsmqﬂ"

e

(18%)

N . I
The remaining terms vanish on the basis of the relation oy =1

ggr g R
If we select the constants u and Z; as follows

12



%, 4=hi(E_ 1,
i = — T, SR 2 ] |
; ) ¥ 82 (ai,aj") 'Vj" A (19)
e = [0 — )]

E
4nhicl_—6-—'np]
and subject the aggregate of frequenciés »? to such restfictions that the

series

bj bju 'Vj”
o7 — (9.

<]

Jrjt=1

converges, after substitution of (18) and (17) we obtain simply zero on the
left-hand side., The second term in (18*) vanishes as a result of the special

e
* choice of 197 , and the first term likewise vanishes as a result of the choice

AR iqm &
of uJJ , which here equals the number ?fj ==;;Gﬂﬂﬁf? with the opposite sign.

The series considered converge absolutely and uniformly.

So . :
However, if vl = VJ, the associated term in (17%*) is

i <

S 1 na I
s %;(aﬂa]”) cos2nw[t——-—c— +ocf-!cox-127wf[t——-——c—~ + af ]

? st ' S ‘ 62 TN "
= 5‘0?1(“10’7 ) cos (@f + @) 4 m(aj,aj ) cos (of — ad").

as may readily be seen, we may in this case assume

5 [(97 + 7" co8 (o — ") + sin (@7 + ¢/)] (20)
16v1fide [—c— —— np]

(ad, 0"y €?

yjj” g4

13



If we set j = j in the last formula, we obtain in the expression for

YJ the last term

(dj)ﬁ &

! I [2(pl+sm2rpj],
lﬁﬂvfhw]-u——np]

hence the latter may be regarded as YJ'Z.
y_, which satlsfles equation (1) under the given potential conditions of

(14) for the external field, will now be of the following form:

N
. (21)

' _.L[Ft-~pa:]+Zchoupf-%—},GfsinW.;.)‘yjj ;
-eamc} k i=1 o g=1 iy,

In this equation

',vﬁ = il cos @i sin pf’ + Uf' 8in @J cog qof y

11f i :lzyiand @ — ¢ o= const,, (and b
W= Bl e+ K7 sin (¢4 + o),

el ! g _ g . J' J. s ! .
if =4 or ¢ - ¢* = const., i.e., v =vY; 4 and § vary independently of

each other from one to + «; in addition,

(aJ,p)e | K — e? (q,f ajt) ey

A
.

29:1!%13(_?—— 'np] 16xviliic tgw np]

Bi=gf, Ci=

. (21%)
Rii' = Kif' cos (@f — af'). -

If we make use of the properties of the matrices initialiy:referred to, we
may also write expression (21) in the form

14



"—Qamo} (1+29{¢08¢j>e R i -y : i

i=1

Byisupérpo§ition of such solutions with different«values of p we obtain -
for the solutions of the Dirac equation, under the given special conditions,
a still more general explicit expression

'w.==I0(P)WpéP-G. (23)

Again, the integral in this case is to be considered as being a triple
integral. ¢ (p) denotes any desired matrix, one subject only to the condition
that integral (23) exist if the range of integration is infinite.

We hope to be able to continue the foregoing operations and give certain
applications in a future paper.

1 December 1934

Translated for the National Aeronautics and Space Administration under
contract No. NASw-1695 by Techtran Corporation, P. O. Box 729, Glen Burnie,
Maryland, 21061.
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